

rERa	Equipos de medida: Espectrometria						
Rediológica Ambiental	Método A: Evalu	Jación	del fotopico				
Inventari	io de Actividad		ADQUISICIÓN ₀ ENTRADA de DATOS				
E(keV) = ($c_0 + c_1C + c_2C^2 + c_3C^3$	→	MODELO de FORMA del PICO CALIBRACIÓN en ENERGÍA				
			CÁLCULO DE ÁREAS NETAS ↓				
Librerías	i.	•					
Fuente ext Método El Calibració	tendida ML n matemática (ISOCS)	→	CALIBRACIÓN EN EFICIENCIA				
Gundradio			CALCULO DE ACTIVIDADES				
Factores de (ICRU 53 (HASL258	Conversión a Dosis (FCD) 1994) (1972)	→	ESTIMACIÓN DE ERRORES Y AMD CÁLCULO DE DOSIS EXTERNAS				
Kocher (1	985)						
		•	CONSCIENCES DECONSCIENCES CONSCIENCES CONSCIENCES				

F Progra Rad	ma de Recuperación iológica Ambiental		Método A:	Evaluación /DIS 18	del fotopico 589-7
	Radionucleido Serie del Uranio U-238 U-234 Th-234	Línea principal (keV) 13 53 63	Tasa de kerma el de actividad por (nGy/h)/(Bq/kg) 4.33E-05 5.14E-05 9.47E-04	n aire por unidad unidad de masa Fracción de la serie 0.01% 0.01% 0.21%	Kerma en aire producido a 1 m de altura sobre el suelo por los radionucleidos naturales distribuidos uniformemente en el suelo con una concentración unidad de actividad másica.
	Pa-234m Pa-234 Th-230 Ra-226 Rn-222 Pb-214 Bi-214 Tl-210 Pb-210	1001 98 68 186 512 352 609 800 11	3.00E-03 4.49E-04 6.90E-05 1.25E-03 8.78E-05 5.46E-02 4.01E-01 1.15E-04 2.07E-04	0.65% 0.10% 0.01% 0.27% 0.02% 11.82% 86.83% 0.02% 0.04%	También se muestra la energía de la línea de emisión gamma que aparece con más claridad así como la contribución de cada radionucleido a la tasa de kerma debido a las series naturales de Uranio y Torio (suponiendo equilibrio radiactivo en las mismas).
	Serie del Torio Th-232 Ra-228 Ac-228 Ac-228 Ra-224 Ra-220 Pb-212 Bi-212 Bi-212 Ti-208 Total K-40	64 7 911 84 241 24 238 727 583-2614 1462	4.62E-01 4.78E-05 5.45E-05 2.21E-01 3.44E-04 2.14E-03 1.73E-04 2.77E-02 2.72E-02 3.26E-01 6.05E-01 4.17E-02	0.01% 0.01% 36.55% 0.06% 0.35% 0.03% 4.58% 4.50% 53.91%	La Tabla se basa en la Tabla 5.2 de ICRU- 53 (pág. 44)

	l		La transformación de inventario de actividad a kerma en
		500	aire se ha realizado utilizando los factores de conversión a
		FCD	dosis incluidos en la tabla G 1 de la Norma UNE EN ISO
Т	H-234	0 0009	
Pa	-234m	0.0030	10509-7.
R	A-226	0.0013	
PI	B-214	0.0546	Para aquellos radionucleidos incluidos en el inventario y
B	I-214	0.4010	que no se encuentran listados en la tabla G 1 de la Norma
P	b-210	0.0002	que no se encoentral histados en la tabla O. Pue la Norma,
l u	-235	0.0291	se nan obtenido los factores de conversion utilizando la
T	H-227	0.0199	librería incluida en la ICRP 107 y los factores de conversión
R	A-223	0.0254	para fotones monoenergéticos incluidos en la Tabla 2 de la
A	C-228	0.2210	publicación: "CONVERTINO SPECIEIO ACTIVITY INTO AMPIENT
PI	B-212	0.0277	publication. Converting Specific Activity INTO AMBIENT
В	I-212	0.0272	DUSE EQUIVALENT: UPDATED COEFFICIENTS FOR IN SITU GAMMA
T	L-208	0.3260	SPECTROMETRY F. O. Bochud, JP. Laedermann, S. Baechler and C.
H	K-40	0.0417	Ballath Institute of Radiation Physics (IRA), Lausanne University Hospital
C	S-137	0.1450	(CHUV), Switzerland. Radiation Protection Dosimetry (2017), Vol. 174, No. 2,
			pp. 167–174 Advance Access publication 20 June 2016

rERA	Equipos de medida: Espectrometria						
Programa de Recuperación Radiológica Ambiental	odo B: Deconvolución del espectro completo						
La tasa de dosis se detector directament eliminar el fondo Co absorción incompleta	e obtiene mediante la evaluación de la fluencia de fotones que llega al te. Para ello, el espectro se debe "deconvolucionar" en un primer paso para ompton de los fotones dispersados en el detector. Con esto se corrige la a de la energía de los fotones detectados.						
Cuando la radiación toda su energía o su de centelleo no sola emitidos por la fuent	gamma interacciona con un detector de centelleo puede, o bien depositar ufrir una absorción parcial (Compton). Por tanto la respuesta de un detector amente incluye la energía correspondiente a los picos de absorción total e, sino que además incluye los efectos de diferentes absorciones parciales.						
La relación entre el e expresarse con la sig	espectro medido O y la fluencia del espectro de fotones incidentes \emptyset puede quiente ecuación matricial.						
	$ \begin{bmatrix} O_1 \\ O_2 \\ \vdots \\ O_n \end{bmatrix} = \begin{bmatrix} R_{1,1} R_{1,2} & \cdots & R_{1,m} \\ R_{2,1} R_{2,2} & \cdots & R_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ R_{m,1} R_{m,2} & \cdots & R_{m,m} \end{bmatrix} \times \begin{bmatrix} \Phi_1 \\ \Phi_2 \\ \vdots \\ \vdots \\ \Phi_m \end{bmatrix} $						
La matriz de respuesta, \hat{R} (n,m) está compuesta por el conjunto de "m" espectros de perdida de energía específicos del conjunto de "n" canales cada uno, que se obtienen mediante simulación del detector por métodos de Monte Carlo.							
De la expresión ma	atricial anterior se puede obtener el flujo mediante la siguiente expresión:						
	$\vec{\phi} = \widehat{R^{-1}}.\vec{O}$						

RERA		Carac	terizacio	ón de los	s Green			
Programa de Recuperación Radiológica Ambiental	sultado	s Green	Ballest	eros: Inv	entario	de Activi	dad	
Resultados SE	GIS ordenados po	or series						
	Punto 1_1 Ba_ka ^{.1}	Punto 1_2 Ba ka-1	Punto 1_3 Ba ka-1	Punto 1_4 Ba ka-1	Punto 1_5 Ba ka-1	Promedio Ba ka-1		
TH-234	< AMD	< AMD	< AMD	< AMD	< AMD	< AMD		
Pa-234m	< AMD	< AMD	< AMD	< AMD	< AMD	< AMD		
RA-226	< AMD	85 ± 22	< AMD	84 ± 21	< AMD	84 ± 8		
PB-214	70±3	48 ± 2	39 ± 2	51 ± 2	47 ± 2	49 ± 5		
BI-214	55±2	49±2	40 ± 2	47±2	43 ± 2	46±3		
Pb-210	< AMD	< AMD	< AMD	< AMD	< AMD	< AMD		
0-235 TH-227	< AMD	< AMD	< AMD	< AMD	< AMD	< AMD		
RA-223	< AMD	< AMD	< AMD	< AMD	< AMD	< AMD		
AC-228	20±2	24 ± 2	23 ± 2	21±2	23 ± 2	22 ± 1		
PB-212	21±2	19 ± 2	20 ± 2	21 ± 2	19 ± 2	20 ± 1		
BI-212	24±6	23 ± 7	30 ± 7	< AMD	< AMD	26 ± 2		
TL-208	24±2	< AMD	22 ± 1	20 ± 2	< AMD	22 ± 1		
K-40	861±33	1060 ± 38	909 ± 34	893 ± 34	882 ± 33	914 ± 33		
CS-137	< AMD	< AMD	< AMD	< AMD	< AMD	< AMD		
<amd: in<="" td="" valor=""><td>forior a la activida</td><td>d mínima</td><td></td><td></td><td></td><td></td><td></td><td></td></amd:>	forior a la activida	d mínima						
detectable	CITOL & 14 ACTIVIDA	Builling						
Resumen de ta	sa de kerma en							
aire								
	Punto 1_1	Punto 1_2	Punto 1_3	Punto 1_4	Punto 1_5	Promedio		
	nGy h-1	nGy h ⁻¹	nGy h-1	nGy h-1	nGy h ⁻¹	nGy h-1		
Serie U-238	25.8± 0.8	22.2± 0.8	18.3± 0.7	21.7± 0.9	19.8± 0.7	21.3± 1.0		
Serie Th-232	13.4± 0.7	6.4± 0.5	13.4± 0.7	11.8± 0.8	5.6± 0.4	13.2± 0.3		
Serie U235	< DMD	0.2± 0.0	< DMD	0.1± 0.0	< DMD	0.1± 0.0		
K-40	35.9± 1.4	44.2± 1.6	37.9± 1.4	37.2± 1.4	36.8± 1.4	38.1± 1.4		
CS-137	< DMD	< DMD	< DMD	< DMD	< DMD	< DMD		
Terrestre								
SEGIS	75.1±1.7	73.0± 1.8	69.6± 1.7	70.9± 1.8	62.2± 1.6	/2./± 1.8		
Cosmica Tatal SECIE	30.0± 3.7	30.0± 3./	30.0± 3.7	30.0± 3./	30.0± 3./	30.0± 3./		
I I I I SEGIS	111.8±4.1	109.0± 4.1	100.2± 4.0	107.5± 4.1	98.8± 4.0	109.3±4.1		
<pre>>DMD: Valor in</pre>	ferior a la tasa de	kerma en aire m	ínima	110.4± 0.4	112.21 U.3	110.5± 3.0		
detectable		norma en alle m						
20120(00)0	0.60%	-4.26%	-12.47%	-7.34%	-13.59%	-6.58%		
								Ciemol
			85			THE BETTERNE	DE ODIOA, DINOVICIÓN Y UNIVERSIÓNOES	Coron di Inselgation Insegnos Halophanis y familgos

RERA			Caract	erizació	n delos	Greens			
Programa de Recuperación Radiológica Ambiental	F	Resultad	los Gree	en Cosm	a: Invent	ario de	Activida	d	
	Resultados SEG	IS ordenados po	r series						•
	1000110000020	Punto 2 1	Punto 2 2	Punto2 3	Punto 2 4	Punto 2 5	Promedio	1	
		Bq kg ⁻¹	Bq kg-1	Bq kg-1	Bq kg ⁻¹	Bq kg ⁻¹	Bq kg ⁻¹		
	TH-234	< AMD	< AMD	< AMD	< AMD	< AMD	< AMD		
	Pa-234m	< AMD	< AMD	< AMD	< AMD	< AMD	< AMD		
	RA-226	2240±112	2530 ± 121	2820 ± 134	2780 ± 132	2270 ± 112	2491 ± 121		
	PD-214 PL 214	1900±43	2000 ± 45 2260 ± 24	2510 ± 50	2250 ± 49 2570 ± 25	1070 ± 41 2070 ± 20	2000 ± 03		
	Pb-210	959+127	877 + 128	902 + 143	790 + 141	687 + 123	840 + 49		
	U-235	< AMD	< AMD	< AMD	< AMD	< AMD	< AMD	1	
	TH-227	97±35	119 ± 55	125 ± 44	135 ± 62	95 ± 34	107 ± 9		
	RA-223	128±16	128 ± 16	166 ± 18	128 ± 18	116 ± 15	112 ± 29		
	AC-228	< AMD	24 ± 4	< AMD	17 ± 4	16 ± 4	19 ± 3		
	PB-212	< AMD	< AMD	< AMD	< AMD	< AMD	< AMD		
	BI-212	< AMD	< AMD	< AMD	< AMD	< AMD	< AMD		
	K-40	678+28	704 + 29	709 + 29	678 + 28	689 + 28	691 + 6	1	
	CS-137	< AMD	< AMD	< AMD	< AMD	< AMD	< AMD		
	<amd: inferi<="" td="" valor=""><td>or a la actividad m</td><td>ínima detectable</td><td></td><td></td><td></td><td></td><td></td><td></td></amd:>	or a la actividad m	ínima detectable						
	Resumen de tasa	de kerma en aire						1	
		Punto 2_1	Punto 2_2	Punto2_3	Punto 2_4	Punto 2_5	Promedio		
	Serie II-238	972 2+ 13 1	1023 2+ 13 7	1184 5+ 16 4	1157 1+ 14 3	935.2+ 11.7	1035 4+ 44 0	1	
	Serie Th-232	3.4± 3.1	5.4± 1.0	< DMD	9.9± 1.6	3.5± 1.0	9.8± 1.3		
	Serie U235	5.2±0.8	5.6± 1.2	6.7± 1.0	5.9± 1.3	4.8± 0.8	5.0± 0.8		
	K-40	28.3± 1.2	29.4± 1.2	29.6± 1.2	28.3± 1.2	28.7± 1.2	28.8± 0.3		
	CS-137	< DMD	< DMD	< DMD	< DMD	< DMD	< DMD		
	Terrestre	1000 01 10 0	1000 5. 10 5	1000 7. 10 1	1001.0.1.5	070.0.41	1070 0. 1. 0		
	SEGIS	1009.0±13.6	1063.5± 13.9	1220.7± 16.4	1201.2± 14.5	9/2.3± 11.8	1079.0± 44.0		
	Total SEGIS	30.5± 3.6	30.5± 3.7	30.0± 3.7	30.5± 3.6	30.5± 3.6	30.5± 3.6	-	
	PIC RS-131	1059.7+0.6	1078 7+ 1.5	1297 1+ 2.4	1297.3+ 7.1	953.7+ 3.6	1071.8+ 54.5	1	
	<dmd: inferior<="" th="" valor=""><th>a la tasa de kerma er</th><th>aire mínima detectab</th><th>le</th><th></th><th></th><th>, , , , , , , , , , , , , , , , , , , ,</th><th></th><th></th></dmd:>	a la tasa de kerma er	aire mínima detectab	le			, , , , , , , , , , , , , , , , , , , ,		
		-1.37%	1.94%	-3.16%	-4.82%	5.45%	3.92%		
				86		÷.	in ereand	MINISTRAD DE CENCIA, MARINALIEN TUNIVERSIONES	Ciernol Greens Interpreter Internet Internet 1 Teoritage

RERA Caracterización	de los Greens
Programa de Recuperación Radiológica Ambiental Resultado	s Green 2
Serie del ²³⁵ U	La estación 2 presenta resultados típicos de
α 3,270×10 ⁴ allos 231 Th β ⁻ 231 Ph 25,02 boras α	los acopios de estériles de minería de uranio, donde no aparecen los progenitores ²³⁸ U y ²³⁵ U pero si algunos de sus descendientes, incluyendo el ²²⁷ Th.
21,77 años 27 Ac $\frac{\beta}{89} \text{ Ac}$ $\frac{\beta}{90} \text{ Th}$ 18,718 días 1,4% α α 21,8 minutos 27 Pr $\frac{\beta}{90,904}$ $\frac{\beta}{80} \text{ Rn}$ 11,43 días $\alpha,\infty,\%$ α α 54 segundos $\frac{219}{87} \text{ At}$ $\frac{\beta}{37}$ $\frac{\beta}{81} \text{ Rn}$ 3,96 segundos	La presencia de actividad de ²²⁷ Th y ²²³ Ra de cortos períodos de semidesintegración, 18,72 d (2) y 11,435 d (4) respectivamente está justificada por la presencia de ²²⁷ Ac, de período de semidesintegración significativamente más elevado 21,773 a (3) y este radionucleido permanece en los estériles de la minería del uranio en donde va se ba
7,4 minutos 7,4 m	extraído mayoritariamente el uranio (tanto el ²³⁸ U como el ²³⁵ U cabeza de la serie radiactiva a la que pertenecen el ²²⁷ Th y el ²²³ Ra). El ²²⁷ Ac presenta en todas sus emisiones gamma, unas intensidades absolutas asociadas muy bajas, por lo que no se ha identificado en el espectro gamma.
$\underbrace{\begin{smallmatrix} 297 \\ 297 \\ 4,77 \\ minutos \end{smallmatrix}}_{227 Pb} Eatable$	COMPACT CONTRACT CONTRACTOR CONTR

REF	RA		Caracteriz	ación de lo	s Greens				
rama de R adiológica /	ecuperación Ambiental		Resultado	s: Radiació	n externa				
	Kerma en aire, Terrestre solo, nGy/h								
ampa	Punto	SEGIS, Método A	INa(TI), Método C	LaBr(Ce), Método C	DetH10, nGy/h, Método B	RS-131, nGy/h,Terr	1		
	1_1	75.13± 2.91	80.77± 0.52	70.28± 6.05	71.37± 0.41	75.69± 0.45			
	1_2	73.02± 2.90	72.00± 0.52	68.13±5.96	69.25± 0.41	78.92± 0.75			
	1_3	69.58± 2.76	76.16± 0.52	67.85±5.95	68.94± 0.41	84.07± 0.74			
	1_4	70.85± 3.14	75.07± 0.52	69.06±6.00	70.15± 0.41	79.98± 0.73			
1	1_5	62.17±2.55	69.73± 0.52	64.50±5.80	65.61± 0.41	76.83± 0.78	1		
	2_1	1012.96± 18.24	1124.25± 19.18	1031.78±48.96	1039.35± 1.09	1023.18± 0.93			
	2_2	1068.03± 17.08	1184.33± 21.83	1085.42± 51.41	1093.89± 1.11	1042.16± 1.68			
	2_3	1225.77± 18.57	1497.53± 34.24	1330.41±62.35	1340.33± 1.22	1260.54± 2.52			
	2_4	1206.11± 18.40	1447.85± 32.04	1311.55±61.52	1321.14± 1.22	1260.73± 7.12			
2	2_5	976.30± 13.69	1003.37± 15.43	940.98± 44.97	947.44± 1.04	917.16± 3.71	1		
	Green 1	72.71± 1.76	74.73 ±3.77	67.91 ±2.66	69.04 ±1.93	78.26 ±2.94			
	Green 2	1079.04± 44.01	1147.47 ±161.81	1109.31 ±149.67	1129.23 ±154.13	1013.04 ±72.73]		
		-7.6%	-4.7%	-15.2%	-13.4%				
		6.1%	11.7%	8.7%	10.3%				
			Kerma er	n aire, nGy/h					
		TEPC, nGy/h	Rss131, nGy/h	TLD, nGy/h	Medida 2014, nGy/h	SEGIS, Metodo A			
	Green 1	106.04± 1.78	116.53± 3.60	146.00±7.00	110.00±5.00	109.33± 4.06			
	Green 2	1042.17±8.87	1071.81± 54.48	1070.00± 30.00	1140.00± 110.00	1115.53± 44.16			
		-9.9%		20.2%	-5.9%				
		-2.8%		-0.2%	6.0%				
			Dosis equivalent	e ambiental, nSv/h (H*10)				
		MDU-1	MDU-2	TEPC, nSv	/h Rss131, nSv/h				
	Green	1 132.81±1.73	131.28± 1.94	127.24± 1.7	78 139.84± 2.16				
	Green	2 1225.92± 12.71	1186.97± 12.31	1250.60± 8.8	37 1286.17±65.37				
		-5.3%	-6.5%	_9.9%	••••••••••••••••••••••••••••••••••••••				
		_4.9%	-8.4%	-2.8%					
		-4.370	-0.470	-2.070					
						RENO MINETING	Cie		

RF	Caracterización de los Greens							
Programa d Radiológi	le Recuperación Ica Ambiental Conclusiones							
1.	Las medidas de tasa de dosis de la cámara de ionización presurizadas en varios puntos presentan un gran acuerdo entre sí y su calidad ha permitido estudiar la aceptable homogeneidad del campo de radiación en ambas estaciones.							
2.	Las medidas de espectrometría gamma "in situ" han revelado la presencia de radionucleidos naturales de un emplazamiento sin alterar en la estación 1 y ha descartado la presencia de radionucleidos de origen artificial. Las tasas de dosis calculadas a partir de estos espectros presentan un acuerdo razonable con los obtenidos con las CIP. Estos valores son totalmente compatibles con los obtenidos en el mismo emplazamiento en el 2011.							
3.	3. Las medidas de espectrometría gamma "in situ" han revelado la presencia de estériles de minería en la estación 2 y ha descartado la presencia de radionucleidos de origen artificial. Las magnitudes dosimétricas calculadas a partir de estos espectros presentan un acuerdo razonable con los obtenidos con las CIP, lo que indica que el inventario de actividad evaluado es correcto. Estos valores son totalmente compatibles con los obtenidos en el mismo emplazamiento en el 2014.							
4.	De las medidas en las estaciones 1 y 2 se concluye que ambas son válidas para la inter- comparación de equipos de medida de tasa de dosis externas, presentando una gran homogeneidad en el área delimitada para ello y gran estabilidad temporal. Los valores de referencia para las mismas son, en términos de tasa de kerma en aire:							
	Valores de referencia:							
	- Estación 1: 0,117±0,004 μGy.h ⁻¹ (k=2) - Estación 2: 1,071±0,055 μGy.h ⁻¹ (k=2)							
	93 Participante Pa							

RERA	Caracterización de los Greens		
Programa de Recuperación Radiológica Ambiental	Conclusiones		-
	Valores de referencia:		
	 Estación 1: 0,117 ± 0,004 μGy.h⁻¹ (k=2) Estación 2 : 1,071 ± 0,055 μGy.h⁻¹ (k=2) 		
	Radiation Protection Dosimetry (2013), Vol. 155, No. 4, pp. 459–466 Advance Access publication 14 February 2013		
	INTERCOMPARISON EXERCISE ON EXTERNAL GAMMA DOSE RATE UNDER FIELD CONDITIONS AT THE LABORATORY OF NATURAL RADIATION (SAELICES EL CHICO, SPAIN)		
	J. L. Gutierrez-Villanueva ^{1,4} , C. Saira-Fernández ³ , L. Fuente-Merino ¹ , J. C. Siez-Vergara ² , E. Corraz-Garceis ² and L. S. Quindos-Pomedla ¹ ¹ RADON Group, Faculty of Medicine, University of Cantabria, Avda Cardenal Herrera Oria s/n, Santander 3901, Spain ² Centro de Investigaciones Energéticas, Medicambientales y Tecnológicas, CIEMAT, Environmental Radiological Resoration Programme, Ac. Complutense 22, Madrid 23040, Spain		
	*Corresponding author: gutierrezjl@unican.es		
	Received May 14 2012, revised November 10 2012, accepted January 23 2013		
	The last melerar accident in Fukashina melerar power plant has increased the necessity for measuring radiation in the envir- onment. Therefore, radiation monitors providing results traceable throughout the country become essential and it is very in- portant to test them under the same environmental conditions. The first intercomparison of natural radiancibity under field conditions was held in Statices et Chico Salamanca, Spaini in May 2011, including an exercise on environmental does rate. This article presents the results achieved by 19 instruments belonging to 12 institutions from 7 different countries. The tested detectors are proportional counters, ionisation chambers, Geiger-Miller and scinillators measuring does rate in three sta- fors with reference values from 110 to 1800 mGe h ² . All the results were given in terms of air kerma (or §h ⁻¹) and the emission structure of the measurements show agreement within 25 % in all the sites. Evaluation criteria based on accuracy and statistical uncertainty were also carried out and 25 % of participants parased the test in all sites.		
	Para cuando ?	DAGTTINEN OKETINEN HIJDINEJARI ADVECTIO ZIOROZETVIELT	Ciemo Crescio Integratori Integratoria Integratoria